50 Gbits/sec: The Next Mainstream Wireline Interconnect Lane Bit Rate

Forum 4: Emerging Short-Reach and High-Density Interconnect Solutions for Internet of Everything

Chris Cole Thé Linh Nguyen 4 February 2016

Outline

> Wireline Overview

- □ 10 Gb/s Lane Optical Interfaces
- 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC
- □ ADC/DSP IC
- **Summary**
- References

Major Applications

- Ethernet (Datacom)
 - IEEE 802.3 standards
 - Mainstream High-volume Interfaces
- Transport Clients (Telecom)
 - ITU-T standards
 - Variants of Ethernet interfaces
- FibreChannel
 - T11 standards
 - Storage
- InfiniBand
 - Low latency is key requirement (ex. no FEC)
 - HPC (High Performance Computing)

Ethernet Data Rates (>10 Gb/s)

- Ethernet data rate is set by the rate of the MAC (Media Access Controller)
- □ Existing Ethernet data rate progression (Gb/s): $10 \rightarrow 40 \rightarrow 100$
- □ Rates in standardization by IEEE 802.3:
 - 25 Gb/s (nearly completed)
 - 50 Gb/s (just started)
 - 200 Gb/s (just started)
 - 400 Gb/s
- □ Resulting Ethernet data rate progression (Gb/s): $10 \rightarrow 25 \rightarrow 50 (\& 40) \rightarrow 100 \rightarrow 200 \rightarrow 400$

Lane Rates & Technology (>10 Gb/s)

In volume use

- 10 Gb/s: 10Gbaud NRZ w/o FEC
- 25 Gb/s: 25Gbaud NRZ w/o & w/ FEC
- In development for near-term volume use
 50 Gb/s: 25Gbaud PAM4 w/ FEC ¹
- □ In development for near-term specialty apps.
 - 50 Gb/s: 50GBaud NRZ w/o FEC ²
- □ In development for long-term use
 - 100 Gb/s: 50GBaud PAM4 w/ FEC ²
 - 100 Gb/s: Complex Mod., ex. DMT, w/ FEC²

¹ Presentation focus

² Not discussed in this presentation

Ethernet Optics Designations & Reach

- □ SRn: < 100m to 300m MMF (& SWDMn)
- □ DRn: <u><</u> 500m SMF (& PSMn)
- □ FRn: ≤ 2 km SMF (& CWDMn)
- LRn: < 10km SMF</p>
- ERn:
- "n" designates number of lanes, either parallel fiber pairs or duplex wavelengths
- □ MMF: Multi-Mode Fiber, for lowest cost lasers
- □ SMF: Single-Mode Fiber, for longer reaches
- □ LC: Lucent Connector, duplex (2x) connector
- MPO: Multi-fiber Push-On, parallel connector

cost

Outline

Wireline Overview

> 10 Gb/s Lane Optical Interfaces

- □ 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC
- □ ADC/DSP IC
- □ Summary
- □ References

10GBASE-SR 850nm MMF Optics

10GBASE-LR 1310nm SMF Optics

40GBASE-SR4 850nm MMF Optics

40GBASE-LR4 1310nm SMF Optics

10 Gb/s Lane Optical Interfaces

Lane Rate	No. Lar	of nes	Data Rate	SW code	LW code
Gb/s	fiber pairs	λ	Gb/s	(MMF)	(SMF)
10	1	1	10	SR	LR
10	4	1	40	SR4	PSM4
10	1	4	40	SWDM4	LR4
10	10	1	100	SR10	

IEEE standards in BOLD; MSA or proprietary in ITALICS

Outline

- □ Wireline Overview
- □ 10 Gb/s Lane Optical Interfaces

> 25 Gb/s Lane Optical Interfaces

- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC
- □ ADC/DSP IC
- □ Summary
- □ References

25GBASE-SR 850nm MMF Optics

25GBASE-LR 1310nm SMF Optics

100GBASE-SR4 850nm MMF Optics

100GBASE-LR4 1310nm SMF Optics

25 Gb/s Lane Optical Interfaces

Lane Rate	No. Lar	of nes	Data Rate	SW code	LW code
Gb/s	fiber pairs	λ	Gb/s	(MMF)	(SMF)
25	1	1	25	SR	LR
25	4	1	100	SR4	PSM4
25	1	4	100	SWDM4	LR4
25	8	1	200	SR8	PSM8
25	16	1	400	SR16	

IEEE standards in BOLD; MSA or proprietary in ITALICS

Outline

- Wireline Overview
- □ 10 Gb/s Lane Optical Interfaces
- □ 25 Gb/s Lane Optical Interfaces
- 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC
- □ ADC/DSP IC
- □ Summary
- □ References

Shannon-Hartley Theorem

- $C = B \log_2 (1 + S/N)$
 - $C \triangleq Channel capacity$
 - $B \triangleq Bandwidth$
 - $S \triangleq Signal Power$
 - $N \triangleq Noise Power$

Guidance to increase C:

- If B limited, increase S/N to increase modulation order, i.e. more bits/Baud
- If S/N limited, increase B to increase Baud rate, i.e. switch faster

Cu vs. SMF Link Loss & TRX S/N

Cu channel limitation: Bandwidth (B)
 SMF channel limitation: S/N

Ideal SMF Link Model

- □ SMF channel assumed ideal
- □ 4th order BT filter model for TX * Channel * RX
- □ Bandwidth \triangleq B = a * bit-rate
- □ Example bandwidths for bit rate = 56Gb/s
 - ex. 1: $a = 0.25 \rightarrow B = 14GHz$
 - ex. 2: $a = 0.30 \rightarrow B = 17$ GHz

Slicer Input of Ideal SMF Link

Vertical Eye Closure at Slicer Input

C. Cole, T. Nguyen

50 Gb/s NRZ vs. PAM4 Optical Lanes

- □ 50G NRZ Advantages:
 - Optical SNR
 - Well understood development methodology ex. 10G NRZ \rightarrow 25G NRZ
- □ 50G PAM4 Advantages:
 - 50G PAM4 IC ecosystem & volume
 - 25G NRZ optical packaging reuse
 - 25G NRZ SMF & MMF laser reuse
- Deciding factor in favor of 50G PAM4
 - Optics is the tail on the IC industry dog
 - PAM4 was developed for 50G ASIC SerDes because of channel bandwidth limitations
 - Despite SNR limitations optics tail wagged

Outline

- Wireline Overview
- □ 10 Gb/s Lane Optical Interfaces
- □ 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection

> 50 Gb/s Lane Optical Interfaces

- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC
- □ ADC/DSP IC
- □ Summary
- □ References

50GBASE-SR 850nm MMF Optics

Likely dominant,			
standard form			
factor: SFP28			
w/ 2x LC			

Data

Rate

Gb/s

50

50GBASE-LR 1310nm SMF Optics

56Gb/s PAM4 optical eye

Likely dominant, standard form factor: SFP28 w/ 2x LC

Lane Rate	No. of Lanes		Data Rate
Gb/s	fiber pairs	λ	Gb/s
50	1	1	50

200GBASE-SR4 850nm MMF Optics

200GBASE-LR4 1310nm SMF Optics

400GBASE-LR8 1310nm SMF Optics

50 Gb/s Lane Optical Interfaces

Lane Rate	No. Lar	of nes	Data Rate	SW code	LW code
Gb/s	fiber pairs	λ	Gb/s	(MMF)	(SMF)
50	1	1	50	SR	LR
50	1	2	100	SWDM2	LR2
50	4	1	200	SR4	PSM4
50	1	4	200	SWDM4	FR4, LR4
50	1	8	400		FR8, LR8

IEEE standards in BOLD; MSA or proprietary in ITALICS

Outline

□ Wireline Overview

- □ 10 Gb/s Lane Optical Interfaces
- □ 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces

Laser Driver IC

- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC
- □ ADC/DSP IC
- □ Summary
- References

50 Gb/s PAM4 LD Requirements

- DML has different ON vs. OFF damping behavior
 More severe problem for PAM4 than NRZ
- 26 Gb/s NRZ optical DCA eye 52 Gb/s PAM4 optical sim. eye

 Requires high-speed LD nonlinear compensation
 Requires linear transfer function LD to support multi-levels at similar low power as NRZ LD

LD Nonlinear Pre-distortion

10 Gb/s LD nonlinear pre-distortion example [5]

LD Nonlinear Pre-distortion

Example edge detector circuit that distinguishes rising and falling edges to select different ON and OFF compensation

50 Gb/s PAM4 LD Example

DML eyes using LD with nonlinear compensation ш followed by linear transfer function Enables use of existing 25G DMLs for PAM4

50 Gb/s PAM4 External Modulator

- DML alternative is Continuous Wave (CW) laser w/ linear Si Mach-Zehnder (MZ) modulator [2]
- Cascading binary weighted modulators, driven separately by NRZ bits, creates an optical DAC
- □ Ex. SiPIC with two NRZ modulator drivers [8]

Major drawback is low output optical power

Outline

- Wireline Overview
- □ 10 Gb/s Lane Optical Interfaces
- □ 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC

Trans-Impedance Amplifier IC

- Clock Data Recovery IC
- □ ADC/DSP IC
- □ Summary
- □ References

50 Gb/s PAM4 TIA Requirements

- □ 50G PAM4 OSNR \approx 25G NRZ OSNR 5dB
- □ 50G PAM4 $RX_{sens} \approx 25G NRZ Rx_{sens} 5dB$ [4]
- Ex. requirements
 - 100GBASE-LR4 RX_{sens} = -10.6dBm OMA @1e-12 BER w/o FEC
 - 400GBASE-LR8 RX_{sens} = -15.1dBm OMA @2e-4 BER w/ KP4 FEC
- □ PAM4 receiver linearity requirement:
 - THD at Nyquist freq. < 4% over the full dynamic range
 - Requires higher open loop gain, so requires higher open loop bandwidth vs. NRZ

TIA Topologies

TIA parameter	SFB	СВ
Trans-impedance	$-R_f$	R _C
Input Impedance	$\frac{R_f}{1+g_m R_C}$	$\frac{1}{g_m}$

C. Cole, T. Nguyen

TIA Topologies Sensitivity Comparison

Shunt Feedback (SFB)

$$\langle i_{in,Total} \rangle^2 = \frac{4kT}{R_f} + 4kTr_b \left(\frac{1}{R_f^2} + \omega^2 C_{PD}^2 \right) + \frac{2qI_C}{g_m^2} \left(\frac{1}{R_f^2} + \omega^2 C_T^2 \right) + \frac{4kT}{R_C} \left(\frac{1}{R_f^2} + \omega^2 C_T^2 \right)$$

Common Base (CB)

$$\langle i_{in,Total} \rangle^2 = \frac{4kT}{R_E} + 4kTr_b \left(\frac{1}{R_E^2} + \omega^2 C_{PD}^2 \right) + \frac{2qI_C}{g_m^2} \left(\frac{1}{R_E^2} + \omega^2 C_T^2 \right) + \frac{4kT}{R_C} \left(1 + \frac{\omega^2 C_T^2}{g_m^2} \right)$$

- Given a fixed V_{supply} , SFB operates at higher I_C than CB because it has no V drop across R_E
 - Higher I_C lowers transistor collector noise $2qI_C$, since it is being divided by g_m^2
 - Higher I_c enables larger transistor area reducing r_b without sacrificing f_T

□ SFB RX_{sens} is \sim 1.5dB > CB, so better for PAM4

50 Gb/s PAM4 TIA Example

□ 56 Gb/s DML TX source as shown on page 28

- □ $RX_{sens} \approx -17.5 dBm$ OMA @ 2e-4 BER (KP4 FEC)
- □ Less margin than for 25 Gb/s NRZ optics
- Error floor makes FEC mandatory

Outline

- □ Wireline Overview
- □ 10 Gb/s Lane Optical Interfaces
- □ 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- **Clock Data Recovery IC**
- □ ADC/DSP IC
- □ Summary
- □ References

50 Gb/s PAM4 CDR Requirements

- 1st 50 Gb/s PAM4 lane Ethernet standard is for 400G (8x) and requires adaptive receiver equalization to close optical link budget and eliminate error floors [3]
- □ For electrical links with channel loss up to ~10dB at Nyquist/2, CTLE is sufficient [13]
- For electrical links with channel loss >10dB, DFE is required, increasing CDR power
- For optical links, 5 to 9-tap T/2-spaced FFE demonstrated to be sufficient [14]
- IEEE 802.3 is discussing the exact normative Eq. for 50G PAM4 optical links; detailed specs to be completed in 2016

CTLE for Electrical Links

- Continuous Time Linear Equalizer (CTLE) is used to compensate for channel loss up to 10dB
- Example CTLE characteristics specified by IEEE for 25G NRZ electrical links [8]

CDR Reference-less Design

- Lowest power CDR design is reference-less by eliminating external reference clock generation circuits and internal per lane phase rotators
- Example CDR architecture

 DATAIN
 DATAREC

 DATAIN
 Phase

 Detector
 MUX

 VCO
 VCO

 CLKREC
 CLKREC

Frequency Detector Loop

Filter

CDR Phase Detector (PD)

- Hogge phase detector [9]
 - Linear
 - T/2 wide spaced phase correction pulses
 - better jitter performance
 - higher power
- □ Alexander phase detector [10] [11]
 - non-linear
 - T wide spaced phase correction pulses
 - Digital in nature
 - Lower jitter performance
 - Lower power

CDR Phase-Frequency Detector (PFD)

- PD has limited pull-in range requiring frequency detector to get within CDR loop bandwidth
- Preferred PFD: Pottbacker [12]
- Drawback is degradation in presence of large amount of DJ since data is used to sample inphase and quadrature clock in 10ps window
- PAM4 eye has large amount of DJ requiring transition filtering increasing CDR power

50 Gb/s PAM4 Analog CDR Example

- 56G Gb/s PAM4 SerDes Transceiver ex. [13]
- 3 separate decision paths significantly increase PAM4 CDR circuit complexity/area/power
- Front-end linear Eq. sufficient for optical links
- DFE Eq. required for higher loss electrical links

Outline

- □ Wireline Overview
- □ 10 Gb/s Lane Optical Interfaces
- □ 25 Gb/s Lane Optical Interfaces
- □ 50 Gb/s Modulation Selection
- □ 50 Gb/s Lane Optical Interfaces
- □ Laser Driver IC
- □ Trans-Impedance Amplifier IC
- Clock Data Recovery IC

> ADC/DSP IC

- □ Summary
- References

50 Gb/s PAM4 ADC/DSP CDR

- Alternative to analog CDR is digital CDR implemented in CMOS DSP with integrated ADC
- Example block diagram shows RX ADC and DSP¹ and optional TX DSP¹ and DAC¹ [1]

¹ Not discussed in this presentation

50 Gb/s PAM4 ADC/DSP Requirements

- Continuous-time filter for ADC anti-aliasing
- □ Baud-rate T-sampling ADC for lowest Eq. power
 - Requires robust timing recovery for low penalty
- High loss links require pre-equalization to enable DSP clock recovery
 - Increases latency
 - Requires low loop bandwidth
 - Reduces jitter tolerance
- DSP supports higher number of FFE and/or DFE taps beyond required for CDR to close the link, enabling minimization of optical link penalties

50 Gb/s ADC Implementation

- Time-interleaved SAR is ideal ASIC block [16]
- N master T/H (Track/Hold) x M sub-ADC T/H time-interleaved SAR ADC example:

50 Gb/s SAR ADC

- Splitter buffer determines bandwidth and THD
- Clock timing to N master T/H's and Master T/H gain-error determines resolution
- As CMOS scales, process variation and mismatch limit ADC performance improvements
- 8-bit nominal SAR ADC example [17]
 - 40nm CMOS
 G-bit ENOB w/ 16GHz BW
 - □ 63 GS/s @ 1.25W
 - 28nm CMOS
 - □ 6-bit ENOB w/ 25GHz BW
 - □ 56GS/s @ 0.8W
 - □ 28GS/s @ 0.4W

Summary

- 50 Gb/s PAM4 is the next high-volume shortreach interconnect lane technology
- 50 Gb/s (1x), 100 Gb/s (2x), 200 Gb/s (4x) and 400 Gb/s (8x) data rates will be supported
- 50 Gb/s PAM4 lanes requires adaptive Eq. (analog or digital) and FEC
- Circuit design challenges and opportunities
 - Linear laser driver
 - Linear trans-impedance amplifier
 - Si modulator driver and modulator
 - Multi-level adaptive clock-data recovery
 - High-speed ADC

References

- □ [1] C. Cole, *et al.*, "Higher Order Modulation for Client Optics," IEEE Commun. Mag., Mar. 2013, pp. 52-57.
- [2] G.Denoyer, et al., "Hybrid Silicon Photonic Circuits and Transceiver for 50 Gb/s NRZ Transmission Over Single-Mode Fiber," Journal of Lightwave Technology, Vol. 33, No. 6, Mar. 2015, pp. 1247-1252.
- □ [3] C. Cole, "400Gb/s 2km and 10km Duplex SMF PAM4 PMD Baseline Specifications," *IEEE 802.3b Interim Meeting*, May 2015, Pittsburg, PA.
- [4] K. Ohhata et. al, "Design of a 4x10G VCSEL Driver Using Asymmetric Emphasis Technique in 90-nm CMOS for Optical Interconnection," *IEEE Transactions on Microwave Theory and Techniques*, vol. 58, no. 5, pp., May 2010.
- [5] M. Schell, "Externally modulated laser for PAM at 28 GBaud," Next Generation 100G Optics Study Group, Fraunhofer Heinrich Hertz Inst., Berlin, Germany, Jul. 2012 [Online].
- □ [6] B. Lee et. al, "A WDM-Compatible 4x32-Gb/s CMOS-Driven Electro-Absorption Modulator Array," *OFC*, Tu3G, March 2015.
- [7] M. Mazzini, et. al, "25GBaud PAM4 Error Free Transmission over both Single Mode Fiber and Multimode Fiber in a QSFP form factor based on Silicon Photonics", OFC, Th5B.3, Post-deadline, March 2015.
- [8] INCITS Technical Report for Information Technology Fibre Channel Methodologies for Signal Quality Specification – 2 (FC-MSQS-2), last update: 2014

References

- □ [9] C. Hogge, "A Self Correcting Clock Recovery Circuit", *IEEE Trans. Electron Devices*, vol. ED-32, no. 12, pp. 2704–2706, Dec. 1985.
- □ [10] J. Alexander, "Clock Recovery From Random Binary Signals", *Electronics Letters*, vol. 11, Oct. 1975, pp.541-542.
- [11] B. Raghavan et. al, "A Sub-2 W 39.8–44.6 Gb/s Transmitter and Receiver Chipset With SFI-5.2 Interface in 40 nm CMOS," *IEEE J. Solid-State Circuits*, vol. 48, no. 2, pp. 3219–3228, Dec. 2013.
- [12] A. Pottbacker, "A Si Bipolar Phase and Frequency Detector IC for Clock Extraction up to 8 Gb/s", IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 1747-1752, Dec. 1992.
- [13] J. Li et. al, "Design of 56 Gb/s NRZ and PAM4 SerDes Transceivers in CMOS Technologies", *IEEE J. Solid-State Circuits*, vol. 50, no. 9, pp. 2061–2073, Sep. 2015.
- □ [14] C. Cole, "400Gb/s 2km and 10km Duplex SMF PAM4 PMD Analysis and Measurements," *IEEE 802.3b Interim Meeting*, May 2015, Pittsburg, PA.
- □ [15] P. Stassar, "Updated Considerations and Test Results on 8x50G PAM4," *IEEE* 802.3b Interim Meeting, May 2015, Pittsburg, PA.
- [16] P. Schvan, et al., "A 24GS/s 6b ADC in 90nm CMOS," ISSCC Dig. Tech. Papers, pp. 544–545, Feb. 2008.
- □ [17] I. Dedic, "56GS/s ADC Enabling 100GE", *OFC*, OThT6, March 2010.